Extensions 1→N→G→Q→1 with N=C6 and Q=C22.F5

Direct product G=N×Q with N=C6 and Q=C22.F5
dρLabelID
C6×C22.F5240C6xC2^2.F5480,1058

Semidirect products G=N:Q with N=C6 and Q=C22.F5
extensionφ:Q→Aut NdρLabelID
C61(C22.F5) = C2×D6.F5φ: C22.F5/C5⋊C8C2 ⊆ Aut C6240C6:1(C2^2.F5)480,1008
C62(C22.F5) = C2×C158M4(2)φ: C22.F5/C2×Dic5C2 ⊆ Aut C6240C6:2(C2^2.F5)480,1071

Non-split extensions G=N.Q with N=C6 and Q=C22.F5
extensionφ:Q→Aut NdρLabelID
C6.1(C22.F5) = C30.M4(2)φ: C22.F5/C5⋊C8C2 ⊆ Aut C6480C6.1(C2^2.F5)480,245
C6.2(C22.F5) = Dic5.22D12φ: C22.F5/C5⋊C8C2 ⊆ Aut C6240C6.2(C2^2.F5)480,246
C6.3(C22.F5) = Dic15⋊C8φ: C22.F5/C5⋊C8C2 ⊆ Aut C6480C6.3(C2^2.F5)480,253
C6.4(C22.F5) = C30.11C42φ: C22.F5/C2×Dic5C2 ⊆ Aut C6480C6.4(C2^2.F5)480,307
C6.5(C22.F5) = Dic5.13D12φ: C22.F5/C2×Dic5C2 ⊆ Aut C6480C6.5(C2^2.F5)480,309
C6.6(C22.F5) = C30.22M4(2)φ: C22.F5/C2×Dic5C2 ⊆ Aut C6240C6.6(C2^2.F5)480,317
C6.7(C22.F5) = C3×C10.C42central extension (φ=1)480C6.7(C2^2.F5)480,282
C6.8(C22.F5) = C3×Dic5⋊C8central extension (φ=1)480C6.8(C2^2.F5)480,284
C6.9(C22.F5) = C3×C23.2F5central extension (φ=1)240C6.9(C2^2.F5)480,292

׿
×
𝔽